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Moment Problem and Spectral Theorem
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Hausdorff momentum problem and its relations to spectral theorem for bounded Hilbert
space operators are treated. A generalization for some ordered algebras is shown, where
projections are replaced by idempotents.

KEY WORDS: Hausdorff momentum problem; spectral theorem; ordered algebra;
completely monotone sequence.

1. INTRODUCTION

Recall that the classical Hausdorff problem is the following: given a set of
real numbersvn}22 , find a probability measure on the Borel subsets of the unit
interval [0, 1] such that

1
Vi =/ t"du(t), n>0.
0

Hausdorff has shown that the answer is positive iff the sequence is completely
monotone (see Definition 1 below) (Hausdorff, 1921a,b, 1923). For a review of
the momentum problem see Shohat and Tamarkin (1943) and Widder (1946),
for results on the Hilbert space operators see Riesz and Sz.-Nagy (1955). The
Hausdorff momentum problem in the context of effect algebras has been treated
in Duchaiet al. (1997).

Inthe present paper, we relate the momentum problem to the spectral theorem.
In the first part, we give a detailed solution of the momentum problem for bounded
self-adjoint (s.a.) operators on a Hilbert space. In comparison with Duehal”
(1997), more direct methods are applied. Then we show that the solution of the
momentum problem yields an alternative proof of the spectral theorem. Finally,
we extend the results to some ordered algebras.
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2. HAUSDORFF MOMENTUM PROBLEM FOR HILBERT SPACE
OPERATORS AND SPECTRAL THEOREM

Let H be a Hilbert spacel.(H) the lattice of all closed subspaces ldf
S(H) the set of all (bounded) s.a. operators &GHl ) the effect algebra of all s.a.
operatorsAwith 0 < A < |. By an observable we mean a POV measure on Borel
subsets of the intervah[ b] of real line, a state is a probability measurelofH ).

By Gleason’s theorem, states correspond to positive opefataith trace 1 such
that

m(P) = rDP, P e L(H).

Hence, states correspond to the positive linear functionals on the algéfjaof
all bounded operators af of the formB +— trDB. The restriction of a state to
E(H) is a state or£ (H). Observe that if is a state ang is an observable, then
E — s(y(E)) is a usual probability measure &{[a, b]).

We shall say that a sequena )g° of elements oiS(H) is a solution of
the observable momentum problénthere is an observable (POV measuye)
B([a, b]) - S(H) such that

b
S(an) = f t"s(y(dt)

for every states.
First we take for §, b] the unit interval [0, 1].

Definition 1. Let (vy)§° be a sequence of numbers. Define Kot 0, 1, 2,.. .,
the operatonn® by

A%, =v,, Al =vi—vhoa
k k k k
AV = v, — 1 Vni1 + 2 Vg2 + -+ (—1)'vax, N=0,1,....

We say that the sequence,) is completely monotond Akv, > 0, where
nk=0,1,....

Now Hausdorff momentum theorem in the classical probability theory says
that for a sequence{)g° to be the moment sequence of some unique positive mea-
surep on [0, 1] it is necessary and sufficient that)g® be completely monotone.

In the following theorem we extend this result to the POV-observable momentum
problem. First we need the following definition.

Definition 2. Let (a,)3° be a sequence of effects. We shall say that this sequence is
completely monotoriéfor every vector statsy, (¥ € H, ||y || = 1) the sequence
(sy(an))g° is completely monotone.
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Since every state can be expressed as a convex combination of vector states,
a sequences)’ of effects is completely monotone if and only if for every state
the sequences(an))§’ is completely monotone.

Theorem 1. A sequence of effec(a,)g° is a solution of the POV-observable
momentum problem, i.e., there is a POV measurd3{[0, 1]) — £(H) such that

1
anzf t"y(dt), n=0,1,....
0

if and only if(a,)5° is completely monotone.

Proof: Let there exist an observabjesuch that

1
an=/ t"y(dt), n=0,1,...,
0

that is,

1
(@t ¥) = /0 " (y(dy, ¥)

for every unit vectory € H. Then ast — (y(E)vy, ¥) is a probability measure
on B([0, 1]), (sy(an))3° is a solution of the classical momentum problem for this
probability measure, and hence this sequence is completely monotone.

Conversely, assume thai,{3° is completely monotone. Then for every unit
vectory € H, the sequenced,y, ¥))g° is completely monotone. Therefore, by
the classical result, there is a measuyeon B([0, 1]) such that

1
<an1p,1/f>=/0 ", (dt), k=0,1,....

Since the effects,, are nonnegative operators, the mapping> (a v, ) is a
nonnegative quadratic form d# for everyn.
For any¢, ¥ € H we then have, for eveny =0, 1,.. .,

1 1 1 1
/0 tnﬂ¢+¢(dt)+/(; tn/Lw_qg(dt):Z(/(‘) tn/Lw(dt)ﬁ'/O\ tn//L(p(dt))

Using Weierstrass theorerd, can be replaced by for any continuous function
f defined on [0, 1]. This implies that

Wy +¢(E) + tty—¢(E) = 2(uy (E) + 1y (E))

for everyE € B([O, 1]).
Similarly we prove that

Vity+6(E) < Vg (E) + /g (E).
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This shows thaty — /iy (E) is a seminorm satisfying the parallelogram law.
Therefore, there is a symmetric sesquilinear functiogaky) — ve(y, ¢) such
thatve (v, ¥) = ny (E). It follows by Riesz theorem that there is an s.a. operator
Y(E) such thatve (v, ¢) = (y(E)¥, ¢). Sincep,, is a probability measure, it is
clear that

0<uy(E)=(y(E)y,y) <1

for everyyr, hencey(E) is an effect and the mappirigy— y(E) is a POV measure.
We obtain that, for every € H,

1 1
5y(an) = /0 " (y(dt)p, y) = /0 ts,, (y(d),

which can be written as
1
ap = / t"y(dt). O
0

Now we will show that the solution of Hausdorff momentum problem yields
an alternative proof of spectral theorem for Hilbert space effects.

Let Ac £(H),i.e. Ais an s.a. operator with@ A < I.

We have

AOAn — An' AlAn: An_An+l:(| —A)An

AkAn — An _ (]k-> Aﬂ+1+ (;) An+2+.”+(_1)kAn+k

=( —AFA", n=0,1,....

Itis known that the product of two commuting positive operators is a positive oper-
ator. From the assumption® A < | itfollows that{ A"} is completely monotone.
Hence there exists a unig®V measurey : B([0, 1]) — £(H) such that

1
A”:/O t"y(dt), n=0,1,.... 1)

Now we would like to show that the set of valug&E), E € B([0, 1]), is a system
of idempotents od. For any two polynomialg andq we have, using elementary
“functional calculus” forA (Berberian, 1966)

1
p(A)(A) = /0 p(t)a(t)y(dy)

Let f be any real-valued continuous function on [0, 1]. By Weierstrass theo-
rem, there is a sequence of polynomighg} uniformly converging tof . Put

I flloc = sup| f(t)] : t €0, 1]}.
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It follows
1 PCAY = supl|(P(AYY, ¥) | < ¥ € H, ] = 1)
1
— sups /O POy, ¥)
1
- |||o||oo/O YAV, ¥) < [ Plloo-
Therefore

Pn(A) — Pm(A)l < IIPn — Pmllc = O,

and by the norm-completeness®fH), there is an s.a. operatdi(A) such that
Ipn(A) — f(A)] — O. It can be easily checked th&{A) does not depend on
the choice of the sequen¢e,}. Let f, g be any continuous functions on [0, 1]
and {pn} and{qg,} sequences of polynomials converging uniformly fteand g
respectively, then

lPn(A)an(A) — F(A)g(A)l
< [IPa(A)an(A) — F(A)a (Al + I T (A)an(A) — T(A)G(A)I
< (A - Iea(A) = AT+ T E(A - llan(A) — g(A)l
= KiIpn(A) = (A + (A - llan(A) — g(A)ll = 0, n— oo,

whereK is a bound of the sequenég}.
Let C be a closed subset of [0, Ijc its characteristic function. By Halmos

(1950), there is a monotone sequefi€g of continuous functions decreasing to

XC- Defmmg O = f2, we have als@, | xc. By monotone convergence theo-
rem, fo dyy, ) — fo xe (dyr, ¥) for everyy € H. That |sf fody —
fo xcdy = y(C) strongly,fO gndy — fol xc dystrongly. That isf,(A) — y(C)
strongly, g.(A) — y(C) strongly. Sincegn(A) = f,(A)? by the previous para-
graph, we have for any vectgr € H,

(YO, ¥) = lim (Gu(A), ¥)
= I (fa (A0, fo(A)) = (YO, YC)P)

by the continuity of inner product. ThygC) = y(C)? for any closed subs& of
[0, 1]. By regularity of POV measures (Berberian, 196/ ) is an idempotent
for every Borel subset of [0, 1].
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More generally, ifA is an operator itf§(H) such thatal < A <bl,a < b,
we put
A—al
b—a’

ThenB is an s.a. operator with € B < I. If we use the substitution in (1) fd3
we obtain a representation for the successive powess of

b
A”:/ t"z(dt), n=0,1,...
a

wherez( ) is an observable with the same propertiey@g but corresponding to
the interval g, b].
We have thus proved the following.

Theorem 2. If Ais an s.a. operator ii§(H) such thatal< A < bl, then there
exists a unique observable:\B(R) — S(H) taking values in a commutative
family of idempotents such that

A= " by,

with y satisfying ¥9) = 0, y([a, b]) = I.

3. AGENERALIZATION TO SOME ORDERED ALGEBRAS

Let R be an algebra with unit 1 such th&® (+) forms a partially ordered
abelian group with a positive corfet, and the following conditions are satisfied
for everya,b e R*:

(R1) Ifab=bathenabe R*.

(R2) a(ba) = (ab)a = abaandabae R™.
(R3) aba= 0impliesab=ba= 0.

(R4) @—b)2 e R™.

(R5) 1€ R™.

That is,R is an “effect ring” in the terminology of Foulis (2000).
Observe that for ang, b, c € R*, c commuting with botha andb, we get
by (R1)

a<b=ac<hbc (2)
For everya € R we may define powers by induction, i.e. we put

a®=1al=aa"=a"'.a n>1
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An elementp € R* is an idempotent (or a projection) g% = p. We have by
(R4) that 1- p € R, so that 1- p is also an idempotent. It has been proved in
Greechieet al.(1995), thatp is an idempotent if and only ib A (1 — p) = 0, and
that the seP(R) of all idempotents forms an orthomodular poset.

We will say that an ordered algebfais Dedekindo -completéf for every
monotone increasing sequence of its elements that is bounded from above the
supremum exists.

Property (R2) implies that for arye R* and anyj, k € N, alak = akal =
altk,

For a sequencg,} of elements of an ordered algelRawe define

Ala, = ay,

ko o k k K _
A"ay = ay 1 an+1 + 2 an2+ -+ (=1)ank, n=0,1,...

Definition 3. We will say that a sequenda,} of elements of an ordered algebra
R is completely monotonié A¥a, > 0 for everyn, k = 0, 1,...

Proposition. LetR be an ordered algebra. Then for every elememt &, 0 <
a < 1,the sequencg"} is completely monotone.

Proof: Owing to (R1) and (R2),

k
Z(—l)j <E>an+i =a'l-ak=>0 o
j=1

A stateonR is a bounded positive real linear functional that evaluates the unit
1 € R by 1. Recall that a state onR is nhormalif a, 1 aimpliesm(a,) — m(a).
A setM of states orR is orderingif

Rt ={aeR:m@)>0Yme M}.

If M is ordering it isseparating i.e. if m(a) = m(b) for all m € M thena = b.
Indeed, we have(b — a) = m(a — b) = Oforallm € M, henceb —a € R* and
a—be R*, hencea = b. If M is ordering, the convex envelope M is ordering
as well, so we may assume thdtis a convex set.

An observable ofR is a mapping : B(R) — R*, whereB(R) is the Borel
o-algebra of the real line, such that

(01) x(R) =1,
(02) if ENF = @ thenx(E U F) = X(E) + x(F),
(03) if E; 1 E thenx(E) = \/*°, X(E:)
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An observablex is monotone, that isE C F implies x(E) < x(F). Owing to
X(R) = 1, the range ok is contained in the s§h € R : 0 < a < 1}, that is, in
the effect algebra correspondingZ® We will say that an observableonR is
projection valuedPV) if its range is contained iR (R).

If X is an observable anoh is a state oriR, then the composite mapping
mo X : B(R) — [0, 1] is a probability measure. If : R — R is a measurable
function, thenx o f 1 is also an observable. We can define the expectation of the
observable o f ~1in a statemin the usual way, and by the integral transformation
theorem we get

m(x o f*1)=/Rf(t)mox(dt)=/Rtmo f=1(d).

Definition 4. Let M be an ordering set of states on an ordered algRbi&/e will
say that an elemeate R has aspectral decompositiafthere is a PV observable
Ya such that for everyn € M,

m(a) = /l;tm o Ya(dt).

The following so-called existence property has been introduced in Ducho™
et al (1997).

Definition 5. We say thatR has theexistence propertyf for every convexity
preserving mapping : M — M(B([0, 1])) there is an observabiesuch that for
everym e M, E € B([0, 1]),

m(y(E)) = v(m)(E),

where M(B([0, 1]) is the set of all probability measures on Borel subsets of
[0,1]Cc R.

For example, every von Neumann algebra with no Tigpdirect summand
has the existence property.

Our main result in this section is the following theorem.

Theorem 5. LetR be a Dedekind monotore-complete ordered algebra with
an ordering set of normal states M, having existence property with respect to M.
Then every & R, 0 < a < 1, has a spectral decomposition.

Proof: Leta e R,0< a < 1. By Proposition, the sequen¢a,} is monotone.
For every positive linear functionah,

k k
>0 () =m <Z(—1)J‘ (‘;)ak”) — m(al(1-2)) = 0,

j=0 j=0
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hence{m(a™)} is a completely monotone sequence. By the solution of classical
momentum problem, there is a measuggon 3([0, 1]) such that for everyp € N
and everym € M,

1
m@") = /O t" ().

The mapm — un, is convexity preserving; therefore, by the existence property,
there is an observable: B([0, 1]) — R such that

nm(E) = m(y(E)), E e B5([0, 1]).
If p(t) = ant" + an_1t" 1+ -+ + st + o, define
p(@) = ana” + an_1@" 1 4 - - + aza+ agy,
Ifnp e:qndq are polynomials, theng(- g)(a) = p(a)q(a), by the commutativity of
- aL(.at f be a continuous function on [0, 1] amy a sequence of polynomials

converging uniformly tof . Without loss of generality we may assume thpt —
Pr-1lleo < 27". Define polynomials

Oh=pn—2"".
We have
Gh = CGh1=Pn— Pn1+2" = =lIPo = Proalleo +27" = 0,
Moreover,
I = lloo = 11 f = Po+2"oe < [If = Pollo +27" 0.

It follows that{q} is an increasing sequence uniformly convergingd .to
For everym € M we have

/ () dpim(t) = / an()mo y(dt) — / £ (t) dm(®)

for everym € M. Thereforem(gn(a)) — / f(t) dum(dt) for everym e M.
Moreover,

1
M(Gn(@)) — M(ch_1(@)) = fo (@n(t) — Gr_2(E)m o y(dt) = O.

It follows that the sequendgj,(a)} is monotone increasing, and is bounded from
above byK.1, whereK > 0 is the bound off. By Dedekindo-completeness,
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there is an elementin R equal to the supremum of the sequence. Pt f(a).
By normality of the statesn € M, m(f(a)) = lim,_.» m(gn(a)). Moreover, for
everyme M,

] [ 6® - [ 1©dunt0

< / 1n(t) — (&) dptm(®) — O,
It follows that
m(f(a) = / () dam(®) = / tm(y o f-1(d1))

for everym e M.

Letf, | f,on | 0,0 < fq, gn < 1being sequences of continuous functions,
f, g are bounded measurable functions on [0, 1]. Again by Dedekind monotone
o-completeness we find elementga), g(a) as limits of monotone decreas-
ing sequences of elemenfg(a), gn(a), where for everyn, 0 < f,(a) < 1,0<

on(a) < 1. We have, by (2) and monotonicity of states,
Im(fa(@)an(a) — f(a)g(a))|
=< Im(fa(@)an(a)) — m(f(a)gn(@))| + Im(f(a)gn(a)) — m(f(a)g(a))l
=< Im(fa(a)) — m(f (@)l + Im(gn(a)) — m(g(a))| — O.

Now let C be a closed subset of [0, L}c its characteristic function. There
is a sequence of continuous functiofisbetween 0 and 1 decreasingxe. Then
for everym e M,

m(fn(a))=/ fn(t) dum(t) = xc(t) dum(t).

If gn = 7, thengn(t) | xc(t).
So f2(a) — (xc(a))? = xc(a). Hencey(C) = xc(a) is a projection. O
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